Prototype for rechargeable cement-based batteries developed in Sweden

Lucy Dixon
20.05.2021

Researchers from Chalmers University of Technology, Sweden, have published an article outlining a new concept for rechargeable batteries – made of cement.

Doctor Emma Zhang, formerly of Chalmers University of Technology, Sweden, joined Professor Luping Tang’s research group several years ago to search for the building materials of the future. Together they have now succeeded in developing a world-first concept for a rechargeable cement-based battery.
The concept involves first a cement-based mixture, with small amounts of short carbon fibres added to increase the conductivity and flexural toughness. Then, embedded within the mixture is a metal-coated carbon fibre mesh – iron for the anode, and nickel for the cathode. After much experimentation, this is the prototype which the researchers now present.
Emma Zhang said: “Results from earlier studies investigating concrete battery technology showed very low performance, so we realised we had to think out of the box, to come up with another way to produce the electrode. This particular idea that we have developed – which is also rechargeable – has never been explored before. Now we have proof of concept at lab scale.”
The research has produced a rechargeable cement-based battery with an average energy density of 7 Watthours per square metre (or 0.8 Watthours per litre). Energy density is used to express the capacity of the battery, and a modest estimate is that the performance of the new Chalmers battery could be more than ten times that of earlier attempts at concrete batteries. The energy density is still low in comparison to commercial batteries, but this limitation could be overcome thanks to the huge volume at which the battery could be constructed when used in buildings.
The fact that the battery is rechargeable is its most important quality. Energy storage is an obvious possiblity, monitoring is another. The researchers see applications that could range from powering LEDs, providing 4G connections in remote areas, or cathodic protection against corrosion in concrete infrastructure.
 “It could also be coupled with solar cell panels for example, to provide electricity and become the energy source for monitoring systems in highways or bridges, where sensors operated by a concrete battery could detect cracking or corrosion,” said Emma Zhang.

Challenges remain with service-life aspects

The idea is still at a very early stage. The technical questions remaining to be solved before commercialisation of the technique can be a reality include extending the service life of the battery, and the development of recycling techniques.
“Since concrete infrastructure is usually built to last fifty or even a hundred years, the batteries would need to be refined to match this, or to be easier to exchange and recycle when their service life is over. For now, this offers a major challenge from a technical point of view,” said  Zhang.
Read the scientific article, Rechargeable Concrete Battery in the scientific journal Buildings.
The research project was funded by the Swedish Energy Agency (Energimyndigheten)